D-Dimer Latex Test is intended for the rapid qualitative or semi-quantitative evaluation of circulating derivatives of cross-linked fibrin degradation products (XL-FDP) in human plasma.

INTRODUCTION
During blood coagulation, fibrinogen is converted to fibrin by the activation of thrombin. The resulting fibrin monomers polymerize to form a soluble gel of non-cross-linked fibrin. This fibrin gel is then converted to cross-linked fibrin by thrombin activated Factor XIII to form an insoluble fibrin clot. Production of plasmin, the major clot-lysing enzyme, is triggered when a fibrin clot is formed. Fibrinogen and fibrin are both cleaved by the fibrinolytic enzyme plasmin to yield degradation products, but only degradation products from cross-linked fibrin contain D-Dimer. Therefore, cross-linked fibrin degradation products (XL-FDP) are a specific marker of fibrinolysis.

PRINCIPLE
D-Dimer Latex is a rapid agglutination assay utilizing latex beads coupled with a highly specific D-Dimer monoclonal antibody. XL-FDP present in a plasma sample bind to the coated latex beads, which results in visible agglutination occurring when the concentration of D-Dimer is above the threshold of detection of the assay.

MATERIALS
MATERIALS PROVIDED
- D-Dimer Latex Reagent: a 0.83% suspension of latex particles coated with murine anti-D-Dimer monoclonal antibody, 10mg/mL BSA and 0.1% sodium azide.
- D-Dimer Positive Control: a solution containing purified human D-Dimer fragment, 5mg/mL BSA and 0.1% sodium azide.
- D-Dimer Negative Control: a buffer solution containing 5mg/mL BSA and 0.1% sodium azide.
- Dilution Buffer
- Reaction slide
- Stirring Sticks
- Instructions for Use

STORAGE AND STABILITY
- Store at 2°C to 8°C.
- DO NOT FREEZE.

SPECIMEN COLLECTION AND PREPARATION
Plasma prepared from whole blood anticoagulated with sodium citrate is recommended. The use of EDTA and heparin will result in an increased level of false positive reactions. After separation of the plasma by centrifugation (1500g for 15 minutes at 4°C - 10°C), specimens may be tested directly for the presence of XL-FDP. Defibrination of the plasma is not recommended.

PROCEDURE
1. Bring reagents and specimens to room temperature before use.
2. Place 20 µL of the reagent within a well on a reaction slide. AVOID touching the surface of the Reaction slide
3. Accurately pipette 20 µL of undiluted plasma or of control solution inside the same well next to the drop of Latex Reagent.
4. Mix the Latex Reagent and sample with a stirrer until the latex is uniformly distributed.
5. Rock the reaction slide gently by hand for exactly 3 minutes.
6. At exactly 3 minutes, check for agglutination under a strong light source.

STABILITY: Refer to outer package and vial labels for expiration date.

Adjustment of Reagent Deterioration
Reagent deterioration is indicated by failure of the Latex Reagent to agglutinate with the Positive Control, agglutination with the Negative Control, or evidence of microbial contamination.
NOTE
If test reading is delayed beyond 3 minutes, the latex suspension may dry out giving a false agglutination pattern. If this is suspected, the specimen must be retested.

Semi quantitative Method
1. Prepare serial dilutions of the test plasma with Buffer as follows:
 - 1:2 dilution 100 µL plasma plus 100 µL Buffer solution
 - 1:4 dilution 100 µL 1:2 dilution plus 100 µL Buffer solution
 - 1:8 dilution 100 µL 1:4 dilution plus 100 µL Buffer solution
2. Test each dilution as described in the qualitative method.

QUALITY CONTROL
- It is recommended that both Positive and Negative Controls be included in each batch of tests to ensure proper functioning of the system. Control solutions should be tested by the same procedures as patient samples.
- D-Dimer Positive Control consists of a solution of human D-Dimer at a level of approximately ≥ 0.80 mg/L (≥ 800ng/mL).

RESULTS

A. Qualitative Assay
For the qualitative assay protocol, the following pattern of results should be obtained:

<table>
<thead>
<tr>
<th>Undil.</th>
<th>1:2</th>
<th>1:4</th>
<th>1:8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Buffer</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
| + = agglutination, - = no agglutination

EXPECTED VALUES
A positive result, indicating active fibrinolysis, should be obtained with D-Dimer Latex Test when XL-FDP (D-Dimer) levels are at or greater than approximately 0.20 mg/L (200ng/mL). Plasma specimens from normal subjects are expected to give negative results because their plasma XL-FDP concentrations are typically less than 0.20 mg/L (200ng/mL). Due to many variables that may affect results, each laboratory should establish its own normal range.

LIMITATIONS
Clinical diagnosis should not be based on the result of D-Dimer Latex alone. Clinical signs and other relevant test information should be included in the diagnostic decision.

SPECIFIC PERFORMANCE CHARACTERISTICS
- Plasma from one hundred and seventy (170) apparently healthy, voluntary blood donors was tested using D-Dimer Latex. A negative result was obtained for one hundred and sixty-two (162) of the samples. This equates to a specificity of 95.3% (162/170).
- One hundred and forty-five (145) plasma samples from patients judged to be suffering from, or having a high probability for thrombotic episode, were tested by D-Dimer Latex and another agglutination reference method. The correlation coefficient was \(r = 0.94 \) and the regression equation was \(y = 1.19x \).
- Intra-assay (within run) reproducibility was determined for 10 replicates of 3 plasma samples that contained different levels of XL-FDP. The results were equivalent for all replicates.
- Inter-assay (run-to-run) reproducibility was determined using 10 plasma samples with XL-FDP titers ranging from 1 to 16. In 10 runs, the replicates of these specimens did not vary by more than one titer.
- In an anticoagulant study of 50 parallel citrated, EDTA and heparin plasma samples, the correlation between the titers obtained with D-Dimer Latex and the expected titers (based on ELISA XL-FDP values) was \(r = 0.91 \) for citrated samples, \(r = 0.73 \) for EDTA samples and \(r = 0.78 \) for heparin samples. Citrate is the anticoagulant of choice.
- No assay interference was demonstrated with D-Dimer Latex with spiked specimens containing potential interfering substances at the following concentrations:
 - Bilirubin 0.2 mg/mL
 - Hemoglobin 5.0 mg/mL
 - Lipids (triglycerides) 30 mg/mL
 - Protein (gamma globulin) 0.06 g/mL

Table 1

<table>
<thead>
<tr>
<th>Approximate Range of D-Dimer (XL-FDP) mg/L (ng/mL)</th>
<th>Sample Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.2 (< 200)</td>
<td>Undil. 1:2 1:4 1:8</td>
</tr>
<tr>
<td>0.2 – 0.4 (200 – 400)</td>
<td>+</td>
</tr>
<tr>
<td>0.4 – 0.8 (400 – 800)</td>
<td>+</td>
</tr>
<tr>
<td>0.8 – 1.6 (800 – 1600)</td>
<td>+</td>
</tr>
<tr>
<td>1.6 – 3.2* (1600 – 3200*)</td>
<td>+</td>
</tr>
</tbody>
</table>

* Levels of XL-FDP greater than 3.20 mg/L (3200 ng/mL) can be estimated by further dilutions beyond 1:8.
REFERENCES